ECO-MX

5th Joint Call: ECO-MX

The proposal aims to design efficient catalytic conversion systems for lithium polysulfides (LiPSs) using two-dimensional MXene-based heterostructures to overcome the shuttle effect in lithium–sulfur (Li-S) batteries. By engineering advanced electrode matrices and separators, the project seeks to dramatically improve sulfur utilization, energy density, and cycle life of Li-S batteries.
Posted on

Background

Rechargeable Li–sulfur (Li-S) batteries promise much higher energy density (up to 2570 Wh/kg) compared to Li-ion batteries. However, commercialization is hindered by two main challenges: the insulating nature of sulfur and the shuttle effect caused by dissolved lithium polysulfides, which reduce active material and lead to rapid capacity fading.

Nanostructured materials offer a rational solution. Two-dimensional MXenes (transition metal carbides, nitrides, carbonitrides) and transition metal oxides (TMOs) can be engineered into heterostructures to immobilize LiPSs and catalyze their conversion, enabling both high sulfur loading and reduced shuttle effects. 

The project

ECO-MX pursues the following objectives:

  • Construction of MXene-TMO heterostructures with maximally exposed chemisorption sites for LiPSs, enhancing conversion kinetics and sulfur utilization.
  • Development of multifunctional electrodes and separators to suppress the shuttle effect and improve electrochemical performance.
  • Characterization and mechanism studies using advanced techniques (XRD, XANES, high-resolution microscopy) to evaluate LiPSs kinetics.
  • Fabrication and testing of demonstrator Li-S cells (coin and pouch cells) to validate performance improvements in real battery conditions.

The science

The project integrates expertise in materials science, catalysis, and energy storage:

  • MXene synthesis and heterostructure design (Empa, Switzerland).
  • In-situ characterization of LiPS conversion processes (ENTEC, Thailand).
  • Membrane and separator engineering using nanofiber-based ultrathin porous films with MXene-TMO integration (Sabanci University, Turkey).

Final demonstrators will combine all components into coin and pouch cells, tested against reference batteries. The research builds directly on global initiatives in energy storage, including links to Europe’s Battery2030+ program.

The team

The ECO-MX partners are:

Dr. Jakob Heier (Coordinator), Empa – Swiss Federal Laboratories for Materials Science and Technology, Switzerland

Dr. Pimpa Limthongkul, National Energy Technology Center (ENTEC) – NSTDA, Thailand

Prof. Selmiye Alkan Gürsel, Sabanci University Nanotechnology Research and Application Center (SUNUM), Turkey

 

Contact: 

Dr. Jakob Heier              Email: jakob.heier@empa.ch